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Abstract This paper serves several purposes. First and foremost, it is devoted to
developing a better understanding of the effectiveness of blended learning (BL) in
higher education. This is achieved through a meta-analysis of a sub-collection of
comparative studies of BL and classroom instruction (CI) from a larger systematic
review of technology integration (Schmid et al. in Comput Educ 72:271–291, 2014).
In addition, the methodology of meta-analysis is described and illustrated by
examples from the current study. The paper begins with a summary of the exper-
imental research on distance education (DE) and online learning (OL), encapsulated
in meta-analyses that have been conducted since 1990. Then it introduces the
Bernard et al. (Rev Educ Res 74(3):379–439, 2009) meta-analysis, which attempted
to alter the DE research culture of always comparing DE/OL with CI by examining
three forms of interaction treatments (i.e., student–student, student–teacher, stu-
dent–content) within DE, using the theoretical framework of Moore (Am J Distance
Educ 3(2):1–6, 1989) and Anderson (Rev Res Open Distance Learn 4(2):9–14,
2003). The rest of the paper revolves around the general steps and procedures
(Cooper in Research synthesis and meta-analysis: a step-by-step approach, 4th edn,
SAGE, Los Angeles, CA, 2010) involved in conducting a meta-analysis. This
section is included to provide researchers with an overview of precisely how meta-
analyses can be used to respond to more nuanced questions that speak to underlying
theory and inform practice—in other words, not just answers to the ‘‘big questions.’’
In this instance, we know that technology has an overall positive impact on learning
(g? = ?0.35, p \ .01, Tamim et al. in Rev Educ Res 81(3):4–28, 2011), but the
sub-questions addressed here concern BL interacting with technology in higher
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education. The results indicate that, in terms of achievement outcomes, BL con-
ditions exceed CI conditions by about one-third of a standard deviation
(g? = 0.334, k = 117, p \ .001) and that the kind of computer support used (i.e.,
cognitive support vs. content/presentational support) and the presence of one or
more interaction treatments (e.g., student–student/–teacher/–content interaction)
serve to enhance student achievement. We examine the empirical studies that
yielded these outcomes, work through the methodology that enables evidence-based
decision-making, and explore how this line of research can improve pedagogy and
student achievement.

Keywords Bended learning ! Technology use ! Higher education !
Meta-analysis

Introduction

Quantitative research on distance education and online learning

Few would argue these days that quantitative studies of nearly any aspect of
educational practice represent the final word, but there has been a tendency to
relegate to the periphery these kinds of evidence when questions of the effectiveness
of distance education (DE) and online learning (OL) arise. DE, and the more
recently OL, refers to instructional conditions where learners are for the most part
physically separated from their teachers and where at least two-way communication
connects them (Keegan 1996). DE/OL may be conducted either synchronously or
asynchronously, although Keegan considers the former to be a special case of
classroom instruction (CI). Literally thousands of comparative primary studies,
where DE/OL conditions conform to these instructional specifications, have pitted
DE/OL against CI and since 2000, sixteen major meta-analyses have been mounted
to assess the differences between CI and DE/OL.1 These are among the important
things that we have learned from all of this primary research and synthesis activity:

1. there is general consensus of the effectiveness of all forms of DE (including
OL) compared with CI (i.e., the average effect sizes range from d?& 0.00 for
conventional DE and correspondence education to d? & 0.05–0.15 for OL)—
in other words there is little difference in these two instructional patterns;

2. there is wide variability among studies, from those strongly favoring DE to
those favoring CI, thereby bringing into question the value of point one;

3. there is a tendency for researchers to describe the DE/OL condition in great
detail while characterizing the CI condition as ‘‘traditional classroom instruc-
tion,’’ thereby diminishing the opportunity to describe and compare salient
study features;

1 Means et al. (2013), Cook et al. (2008), Jahng et al. (2007), Lou et al. (2006), Allen et al. (2006),
Sitzmann et al. (2006), Williams (2006), Zhao et al. (2005), Allen et al. (2004), Bernard et al. (2004),
Cavanaugh et al. (2004), Shachar and Neumann (2003), Ungerleider and Burns (2003), Cavanaugh
(2001), Allen et al. (2002), Machtmes and Asher (2000).
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4. comparative primary research is plagued with a variety of methodological
problems and confounds that make them very hard to interpret (Is it the
distance, the media, the instructional strategies, etc., or combinations of these?);
and

5. only a few substantive moderator variables have yielded any information about
what makes DE/OL and CI different.

While these findings are useful, and methodologically heuristic, we still know
little about how to design and implement DE/OL. Beyond experimental research,
the literature is limited to articles on praxis, ‘‘one-off’’ quantitative and qualitative
studies (often survey or institutionally-bounded research) and theory-based
applications of instructional design. Furthermore, it has been argued (Bernard
et al. 2004, 2009; Cook 2009) that there is little left to learn about DE/OL from
studies that compare them with CI. These studies answer the ‘‘big’’ questions (e.g.,
Is DE/OL more effective than CI?), but they generally fail to establish an alignment
of evidence that addresses the ‘‘do’s’’ and ‘‘don’ts’’ of instruction via rigorous
research.

More useful information can be extracted from studies that include DE/OL in
both conditions. A 2009 meta-analysis by Bernard et al. examined comparisons of
greater (i.e., treatment condition) versus lesser-strength (i.e., control condition)
interaction treatments (IT). ITs were defined as media and instructional conditions,
implemented within DE contexts, intended to increase student–student, student–
teacher and/or student–content interaction. A selection of the results of this meta-
analysis is shown in Table 1. All greater-strength IT effects were positive and
significant. In addition, the both student–student and student–content ITs outper-
formed student–teacher treatments (z = 2.69, p = .004 and z = 3.09, p = .001,
respectively). Moreover, post hoc analysis revealed that combinations of student–
content ITs and student–student ITs outperformed student–teacher ITs on achieve-
ment outcomes (z = 2.62, p = .004). The implication is that when students are
given the means to communicate and interact with one another or online with
content, an increase in achievement may result. These findings may have particular
relevance for the design of BL.

Beyond DE and OL, there is a large and growing literature of studies
investigating blended learning, which involves a combination of elements of

Table 1 Average effect sizes for categories of interaction

Categories of interaction treatments Effect sizes and standard errors Confidence interval

k g? SE Lower 95th Upper 95th

Student–student 10 0.49* 0.08 0.33 0.65

Student–teacher 44 0.32* 0.04 0.24 0.40

Student–content 20 0.46* 0.05 0.36 0.56

Total 74 0.38* 0.03 0.33 0.44

Between-classes: Q = 7.05, p = .03

* p \ .01

A meta-analysis of blended learning and technology

123



face-to-face CI and OL outside of class time, and is increasingly becoming a
substitute for CI. It is sometimes argued that BL is the ‘‘best of both worlds’’
because it is a marriage of the best elements of the two practices (Bele and Rugelj
2007). But experience amply defies this broad generalization because, as always, the
devil is in the detail. The study described here is an attempt to fill in some of those
details.

Blended learning

In an early review of BL research, Bliuc et al. (2007) pegged the first use of the term
BL to the year 2000. By 2006, there was a handbook devoted almost solely to its
educational implementation and issues related to BL (i.e., The Handbook of Blended
Learning: Global Perspectives, Local Designs; Bonk and Graham 2006). In 2008,
an influential book appeared, focusing on effective use of BL in higher education
from the perspective of ‘‘communities of inquiry’’ (i.e., Blended Learning in Higher
Education: Framework, Principles, and Guidelines, Garrison and Vaughan 2008).
The growing popularity of BL has been documented in several surveys of
instructors (e.g., Arabasz and Baker 2003) and students (Albrecht 2006) in higher
education institutions, and in 2004, Marquis found that 90 % of university
instructors believed BL to be ‘‘more effective than CI.’’

This enthusiasm for BL has not been matched by a large literature of primary
research studies. In an unpublished vote count literature review of blended/hybrid
learning studies, Zhoa and Breslow (2013) found only 25 studies of blended/hybrid
learning dating from 1999 that met their criteria. Eleven (11) showed a ‘‘significant
difference between the treatment and the control’’ in favor of the BL condition, five
(5) found ‘‘mixed results’’ and nine (9) found ‘‘no significant difference.’’ Most of
the studies were conducted in higher education contexts. To date, there has been
only one meta-analysis devoted to BL (Means et al. 2013). This article was based on
a US Department of Education meta-analysis, originally published in 2009 and
updated in 2010 (Means et al. 2010), which also included purely online learning in a
separate section. BL conditions were found to significantly outperform fully face-to-
face CI where no blending occurred (g? = 0.35, k = 23, p = .001). The majority of
the studies here were also from research in higher education and the authors
acknowledged the difficulty with controlling for time spent outside of class and the
somewhat unequal distribution of materials used.

Similar to the Bernard et al. (2004) meta-analysis of the DE literature, Means
et al. (2013) found that pedagogical setups for BL do make a difference. Namely,
students in both collaborative interactive learning and teacher-directed expository
instructional conditions significantly outperformed those engaged in active self-
study. No other moderator variables revealed significant differential effects on
learning outcomes, though some findings were suggestive. For example, in
computer-mediated communications with instructor and among students, the
asynchronous mode only was more effective than it was in combination with the
synchronous mode. Also, learners in undergraduate courses seemed to benefit more
from BL than graduate students. Interestingly, a balance of course time in favor of
OL instruction (as compared to time spent face-to-face) produced a relatively higher
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weighted average effect size, as well as the opportunity to interact face-to-face with
the instructor during the class time rather than before or after instruction. The BL
treatments of longer duration were more effective compared to shorter ones.
As promising as they appear to be, these results were not statistically significant.

The issue of BL is a complicated one; there has been considerable discussion
even of the meaning of the term itself. Driscoll and Carliner (2005) describe four
patterns, each of which they call a form of BL: (1) a mix of Web-based
technologies; (2) a mix of various pedagogical approaches (e.g., constructivism,
behaviorism, cognitivism); (3) a combination of any form of instructional
technology with face-to-face instructor-led conditions; or (4) a combination of
instructional technology with actual job tasks to form an effective mix of learning
and working. Our operational definition is closer to number three, above, and the
one espoused by Graham (2005) where BL is defined as ‘‘the combination of
instruction from two historically separate models of teaching and learning:
traditional face-to-face learning systems and distributed learning systems’’ (p. 5),
emphasizing distributed learning as the use of computer-based technologies outside
of class time. We go further by focusing on the proportion of time associated with
the classroom/online mixture. BL is thus defined as instructional conditions in
which at least 50 % of total course time is face-to-face CI and students working
online outside of the classroom spend the remainder of time, up to the additional
50 %, online. In some cases this definition produces an equal blend of CI and OL
(i.e., 50–50 %). In most other cases, BL could accrue from as little as 25 % online
work and 75 % face-to-face work. We argue that this a conservative test of BL that
explores the lower limits of the addition of OL components. The classroom use of
computers or other educational technologies in the treatment and/or control groups
does not count as BL in this study.

The meta-analysis presented here is part of a recently completed project that
examines all forms and configurations of technology use in higher education from
1990 through 2010 (Schmid et al. 2014). The results of 674 studies, yielding 879
effect sizes of achievement outcomes, revealed a moderate average effect size,
g? = 0.334, p \ .001), that was significantly heterogeneous.

A portion of these studies was designated as BL because of their mix of CI (i.e.,
face-to-face) and out-of-class OL where the online work substituted for class time.
It is those studies that are addressed in this meta-analysis. So in essence, the corpus
of studies examined here are defined by their ‘‘pedagogical pattern’’ rather than the
technology used—they by definition use technology, but in a way that supports this
increasingly popular mixture.

The goals of this paper are twofold. One is to describe the characteristics of meta-
analysis as an analytical tool, with some commentary on the various aspects of this
methodology. Basic information about major steps and procedures of meta-
analytical research appear in sections labeled ‘‘General.’’ They are then illustrated
by the decisions and findings of the study itself in sections labeled ‘‘Application.’’
To accomplish these two goals, the descriptions in the method section, in particular,
are truncated from their original form in Schmid et al. (2014).
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Research questions in the literature of technology integration

Since 1990, numerous meta-analyses have been published each intending to capture
the difference between technology-enhanced classrooms and ‘‘traditional class-
rooms’’ that contain no technology. Tamim et al. (2011) summarized 25 of the most
important of these in a second-order meta-analyses. Many are specific to particular
grade levels and subject matters, and most deal with specific forms of technology
(e.g., computer-assisted instruction), yet all ask the starkly worded question: Is some
technology better than no technology? The exceptions to this (i.e., Rosen and
Salomon 2007; Lou et al. 2001; Azevedo and Bernard 1995) have attempted to
discern among different instructional strategies within technology use (i.e.,
constructivist use of technology in K-12 mathematics, the use of technology with
small groups and feedback in computer-based learning, respectively). It is arguable
that since about 1990 few classrooms contain no technology at all, so it makes more
sense to cast the question in the form of: What is the difference between this
technology application (e.g., type, amount) and another? Schmid et al. (2014)
attempted to capture the answers that might accrue from both questions, and by
extension so will this study. We also classified the use of technology for teaching
and learning purposes to see if there is a difference between, for instance,
technologies used for cognitive support (e.g., simulations, serious games) and
technologies used to present information and subject matter content (i.e., content/
presentational support).

The remainder of this article is organized around Cooper’s (2010) seven steps for
conducting a systematic review/meta-analysis: Step 1—Formulating the problem:
Step 2—Searching the literature; Step 3—Gathering information from studies; Step
4—Evaluating the quality of studies; Step 5—Analyzing and integrating the
outcomes of research; Step 6—Interpreting the evidence; and Step 7—Presenting
the results. These stages in conducting a systematic review are neither mutually
exclusive nor entirely distinct; rather, they should be viewed as key steps in a
continuous and iterative process. Since every systematic review is somewhat
different, the subheadings under each stage reflect the actual nature of this project.

Step 1: formulating the problem (research questions, definitions, inclusion/
exclusion criteria)

Research questions—general

The questions posed in a systematic review help to focus attention on the goals of
the research endeavor, the important variables that will be addressed and their
relationship to one another. In the case of a meta-analysis of standardized
differences between a treatment condition or intervention and a control condition,
the questions are often expressed as ‘‘the impact of’’ or ‘‘the effect of’’ the
difference in treatments on an outcome or dependent measure. Sometimes this step
is quite straightforward and sometimes it can be quite complex. It is appropriate
here to search for and examine previous reviews of all kinds. There are three
important reasons for not excluding this step. It helps to determine how the problem
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has been dealt with in the past and how recently. It helps to gather others’ views on
the nature of the problem and the terms that have been used and how they were
operationalized. It helps to determine if there are questions left unanswered or if
there are other unexplored ways of looking at the body of research. Complexity is
introduced when there are synonymous terms and/or fuzzy descriptions of the
treatments and dependent measures. For instance, Abrami et al. (2008) expended
considerable effort examining the relationships between the terms ‘‘critical
thinking,’’ ‘‘creative thinking,’’ ‘‘problem-solving,’’ ‘‘higher-order thinking’’ and
the like. The researchers also searched the literature for the range of standardized
measures that were available and their psychometric properties. At one point, a
limited factor analytical study was conducted (Bernard et al. 2008) to determine if
the subscales of the Watson–Glaser Critical Thinking Appraisal (See Watson and
Glaser 1980) were empirically distinguishable from one another, or whether the test
should be considered as a global measure. These are the kinds of issues that often
must be dealt with and resolved before the main work of meta-analysis can begin.

Research questions—application

BL is a special case of CI and OL, because it contains elements of both. There are
many previous meta-analyses in the technology integration literature, over and
above the ones from the DE/OL literature previously described. Tamim et al. (2011)
summarized 25 of them in a second-order meta-analysis and validation study of this
literature. The researchers determined that virtually all of the previous meta-
analyses, and their underlying primary studies, had addressed the no technology in
the control condition question. Schmid et al. (2014) went beyond this by adding
studies where there was some technology in both the treatment and the control
condition, paying special attention to the purpose of technology use. So in that
meta-analysis, the total collection of 879 effect sizes were divided by the form of the
research question—no technology (k = 479) or some technology (k = 400) in the
control condition. Originally, our intention was to make the same distinction here,
but only k = 13 comparisons out of a total of k = 117 (11 %) contained some
technology in the control condition, so this is not a primary focus in our research
questions. It is important to note that in none of these studies did control participants
use technology for BL, so that all of the comparisons reflect the distinction between
BL and CI.

The following questions formed the basis for the current meta-analysis:

• What is the impact of blended learning (i.e., courses that contain components of
both face-to-face and OL) on the achievement of higher education students in
formal educational settings?

• How do course demographic study features (e.g., course subject matter)
moderate the overall average effect size?

• How do various pedagogical factors, like the amount of time spent online
outside of class and the purpose of technology use in the treatment condition,
moderate this effect?
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• How do various interaction treatments (i.e., defined as in Bernard et al. 2009)
modify the overall treatment effect?

• Finally, is there a difference between studies that have no technology in the
control condition and those that contain some technology in the control
condition?

Definitions—general

This involves establishing working or operational definitions of terms and concepts
related to the purposes of the meta-analysis. This is done to help further clarify the
research questions and to inform the process of devising information search
strategies. Definitions also convey what the researchers mean by particular terms,
especially when the terms have multiple definitions in the literature. This was the
case in the critical thinking project just alluded to in the previous section. This step
is important because a well-defined and clearly articulated review question will have
an impact on subsequent steps in the process, especially the step of searching the
literature and making inclusion/exclusion decisions.

Definitions—application

The key terms that frame the research questions above are defined as follows:

• Educational technology use is any use of technology for teaching and learning as
opposed to technology that may serve administrative and/or managerial
purposes. This following quotation from Ross et al. (2010) explains the term
educational technology as it is used here: ‘‘a broad variety of modalities, tools,
and strategies for learning, [whose] effectiveness… depends on how well [they]
help teachers and students achieve the desired instructional goals’’ (p. 19).

• Learning achievement, in this study, is the primary educational goal and is
operationalized to include any measure of academic performance.

• Pedagogical factors refer to elements of instructional design that can be
manipulated by a teacher/instructor in an attempt to provide the best conditions/
support for learning. These might or might not include adaptations of technology
use.

• Blended Learning is the combination of face-to-face and online learning outside
of class, where the latter does not exceed 50 % of the course time. Face-to-face
classroom time therefore can be greater than 50 %.

• Formal educational settings include instructional interventions of any duration
for CI in accredited institutions of higher education.

Inclusion/exclusion criteria—general

Inclusion/exclusion criteria are primarily a set of rules that are used both by
information specialists to tailor the literature searches to the literature implicated in
the research question, and by reviewers to choose which studies to retain (or
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exclude) in/from the meta-analysis. They also determine the inclusivity or
exclusivity of the meta-analysis as a whole. For instance, if the researchers have
decided to include only studies of the highest methodological quality (e.g.,
randomized control trials only), the inclusion criteria will specify this. Likewise, if
the review is to have a particular beginning date (e.g., 1990) or include only
particular contents or populations, the inclusion/exclusion criteria will indicate this.

Inclusion/exclusion criteria—application

Review for selecting studies for the meta-analysis was conducted in two stages.
First, studies identified through literature searches were screened at the abstract
level. Then, the review of full-text documents identified at the first stage led to
decisions about whether or not to retain each individual study for further analyses.
To be included, a study had to have the following characteristics:

• Be published no earlier than 1990.
• Be publicly available or archived.
• Address the impact of computer technology (including CBI, CMC, CAI,

simulations, e-learning) on students’ achievements or academic performance.
• Be conducted in formal higher education settings (i.e., a course or a program

unit leading to a certificate, diploma, or degree).
• Represent BL in the experimental condition and CI in the control condition,

excluding DE and purely OL courses. However, the control condition is allowed
to have technology but not for the purposes of BL.

• Contain sufficient statistical information for effect size extraction.
• Contain at least two independent samples. This includes true experiments and

quasi-experiments and excludes two-group pre-experiments and one-group
pretest–posttest designs. All studies must somehow control for selection bias
(Campbell and Stanley 1963).

Failure to meet any of these criteria led to exclusion of the study with the reason
for rejection documented for further summary reporting. Two researchers working
independently rated studies on a scale from 1 (definite exclusion) to 5 (definite
inclusion), discussed all disagreements until they were resolved, and documented
initial agreement rates expressed both as Cohen’s Kappa (j) and as Pearson’s
r between two sets of ratings.

Step 2: searching the literature

This step involves identifying sources of information, specifying search terms and
developing and implementing a search strategy.

Searching the literature—general

This is arguably one of the most important aspects of conducting a systematic
review/meta-analysis, as it may be compared to the data collection phase of a
primary study. To meet the criterion of comprehensiveness and minimize what is
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known as the ‘‘publication bias’’ phenomenon, it is necessary to look beyond the
published literature to the ‘‘grey literature’’ found in conference presentations,
dissertations, theses, reports of research to granting agencies, government agencies,
the archives of organizations, etc. For a complete picture of the literature, a diversity
of bibliographic and full-text databases must be searched, including those in related
fields and geographic regions. Since different fields (and cultures) use somewhat
different terminologies, strategies for each database must be individually con-
structed. In addition to the database searches, web searches for grey literature,
manual searches through the tables of contents of the most pertinent journals and
conference proceedings, and branching from previous review articles or selected
manuscripts should also be conducted. In some cases researchers will contact
prominent and knowledgeable individuals in the field to determine if they know of
additional works that fit the inclusion/exclusion criteria. Literature searches may
continue even as other stages in the review are proceeding, so that the process of
information search and retrieval is best described as iterative. Naı̈ve information
search and retrieval (e.g., not using a trained professional reference librarian or
information specialist) will result in a systematic review that has limited
generalizability or, even worse, biased results. Guidelines from information search
and retrieval for systematic reviews can be found in various publications. The
Campbell Collaboration publishes such a document (Hammerstrøm et al. 2010) on
its website that is especially useful for the social sciences: http://www.
campbellcollaboration.org/resources/research/new_information_retrieval_guide.php

Searching the literature—application

Extensive literature searches were designed to identify and retrieve primary empirical
studies relevant to the major research question. Key terms used in search strategies,
with some variations (to account for specific retrieval sources), primarily included:
‘‘technolog*,’’ ‘‘comput*’’ ‘‘web-based instruction,’’ ‘‘online,’’ ‘‘Internet,’’ ‘‘blended
learning,’’ ‘‘hybrid course*,’’ ‘‘simulation,’’ ‘‘electronic,’’ ‘‘multimedia’’ OR ‘‘PDAs’’
etc.) AND (‘‘college*,’’ ‘‘university,’’ ‘‘higher education,’’ ‘‘postsecondary,’’
‘‘continuing education,’’ OR ‘‘adult learn*’’) AND (‘‘learn,*’’ ‘‘achievement*,’’
‘‘attitude*,’’ ‘‘satisfaction,’’ ‘‘perception*,’’ OR ‘‘motivation,’’ etc.), but excluding
‘‘distance education’’ or ‘‘distance learning’’ in the subject field. To review the original
search strategies, please visit http://doe.concordia.ca/cslp/cslp_cms/SR.

The following electronic databases were among those sources examined: ERIC
(WebSpirs), ABI InformGlobal (ProQuest), Academic Search Premier (EBSCO),
CBCA Education (ProQuest), Communication Abstracts (CSA), EdLib, Education
Abstracts (WilsonLine), Education: A SAGE Full-text Collection, Francis (CSA),
Medline (PubMed), ProQuest Dissertation and Theses, PsycINFO (EBSCO), Austra-
lian Policy Online, British Education Index, and Social Science Information Gateway.

In addition, a Google Web search was performed for grey literature, including a
search for conference proceedings. Review articles and previous meta-analyses
were used for branching, as well as the table of contents of major journals in the
field of educational technology (e.g., Educational Technology Research and
Development).
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Step 3: gathering information from studies (select studies for inclusion, assign
treatment and control conditions, extract effect sizes, identify the number
of effect sizes, code study features and moderator variables)

Select studies for inclusion—general

In this step raters apply the inclusion/exclusion criteria to the studies that have been
obtained through searches. The first step normally involves an examination of
abstracts, so as to avoid the cost of retrieving full text articles on the first step. Since
many abstracts do not contain elaborate information, raters should err on the side of
inclusion at this stage. The next step is to retrieve full text documents for further
examination. Again, raters apply the inclusion/exclusion criteria as they examine the
entire document for relevance. Normally, two raters are used to accomplish these
selection tasks and inter-rater reliability is calculated to indicate the degree of
agreement between them.

Select studies for inclusion—application

This meta-analysis is a subset of a larger meta-analysis (Schmid et al. 2014).
Therefore, the statistics and other quantitative information presented here is from
the larger study. Overall, more than 9,000 abstracts were identified and reviewed,
resulting in full-text retrieval of about 3,700 primary research studies potentially
suitable for the analysis. Out of this number, through a thorough review of full-text
documents, 674 studies were retained for further analysis. They yielded 879 effect
sizes in the Achievement category. Inter-rater agreements at different stages of the
review were as follows:

• Screening abstracts—86.89 % (Cohen’s j = 0.74) or r = 0.75, p \ .001; and
• Full-text manuscript inclusion/exclusion—85.57 % (j = 0.72) or r = 0.84,

p \ .001.

For the purposes of this meta-analysis of BL, there were 96 studies and k = 117
effect sizes (N = 10,800 students) selected for inclusion from the larger study.
There are no statistics for inclusion at this stage because selection was based on
previously coded study features.

Assign treatment and control conditions—general

Before effect sizes can be extracted the researchers must determine which condition
will be designated as the treatment group and which will be designated as the control
group. It is very important to get this step right as the valence of the effect size
depends on it—getting some studies wrong will greatly affect the veracity of the
findings. In most meta-analyses, designation of the treatment or intervention group
and the control group is clear. Usually, the treatment group receives the intervention
in question and the control group does not. A good example of this is the meta-
analysis by Bernard et al. (2004) in which DE conditions (the treatment) were
compared to CI conditions (the control). However, there are some circumstances,
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especially when two treatments are being compared, when this designation is not
clear. When the question being asked is ‘‘which of these two treatments is most
effective?’’ it is necessary to have some framework or rational basis for establishing
what characteristics of the intervention will define the ‘‘treatment’’ and what
characteristics will define the ‘‘control.’’ In Bernard et al. (2009), the meta-analysis
described in the introduction, different interaction treatments in DE environments
were compared. The intervention or treatment condition was determined to be the
condition that likely evoked the most interaction between: (1) students and other
students, (2) students and the teacher; and (3) students and the content to be learned.
The lesser condition was deemed the control even if it also contained elements
of ITs.

Assign treatment and control conditions—application

The current meta-analysis contains studies that have a clear designation of treatment
and control (i.e., studies with no technology in the one condition), and studies in
which this distinction is less clear (i.e., studies with technology in both conditions).
We handled these two types of studies differently.

No technology in one group Since this was a meta-analysis of the effects of
technology implementation in higher education, some form of educational
technology was required in at least one condition. When this was the case, the
group that received some form of educational technology was deemed the treatment
group and its no technology companion was treated as the control condition.

Some technology in both groups When studies were found with some form of
technology in both conditions, it became necessary to develop and use a set of
standards that could be applied uniformly across all studies of this type. The degree
of technology used was the way we determined the distinction between the
experimental and control conditions. Conditions that contained more technology use
were designated as the experimental conditions while the conditions with less use
were considered the control. The degree of technology use in each condition was
determined as follows:

• Intensity of use (frequency of technology use, and/or length of time used);
• Nature of the technology used (number of options and/or number of different

functions); and/or
• Use of more advanced tools, devices, software programs, etc.

The summative use of educational technology was gauged for each group
independently and rated on a 3-point scale: minimal, moderate, and high.
Experimental and control group designations, based on these rules, were deter-
mined by independent coders using procedures similar to those described in other
stages of the review. The condition with the greatest total among coders was deemed
the experimental condition and the other the control condition. Inter-rater statistics
for the attribution of dimensions and estimation of the magnitude of the difference
between conditions was 75.44 % (j = 0.51), based on sample coding of 100 studies
at the beginning of the project.
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Identify the number of effect sizes—general

Many studies contain multiple conditions, usually multiple variations of a given
treatment. Since in these circumstances there is usually only one control condition,
multiple comparisons may involve the same participants, resulting in dependency
among some effect sizes. A dependency here is defined more formally as two or
more effect sizes that are correlated by virtue of sharing research participants. While
dependency in this case is related to multicollinearity in multiple regression, where
different predictors are correlated, it is more akin to the issue of dependency
encountered in controlling Type I error rate after performing one-way ANOVA.
Type I error rises as pairs of conditions containing the same study participants are
used repeatedly. There are a number of approaches in the meta-analysis literature
that have been devised to handle dependencies of this sort. Scammacca et al. (2013)
compared three practical solutions for dealing with dependency to the results
achieved by treating all comparisons as if they were independent. These were: (1)
selecting the single highest effect size from a group of dependent studies; (2)
selecting a single group at random; and (3) selecting the single most representative
comparison.

To our minds, all of these approaches involve an unfortunate loss of information
and the potential for lower power to find differences in moderator analysis. Ideally,
a method should preserve all comparisons while controlling for the inflation of
within-study variability associated with treating each comparison as if it were
independent. Our preferred approach to controlling for dependencies is to reduce
sample by a multiple of the number of comparisons per study. For instance, if the
two treatments are compared to a single control condition, the sample size of the
control condition is reduced by half. This procedure increases the standard error of
each comparison, and hence each variance, so that when studies are synthesized any
bias due to dependent samples is minimized.

Identify the number of effect sizes—application

There were no dependent effect sizes in this study of BL, even though in some cases
multiple effect sizes were extracted from a single study. In this rare instance, each
treatment group had its own independent control group (e.g., comparisons within
different semesters).

Extract effect sizes—general

Effect size extraction is defined as the process of locating and coding information
contained in research reports that allows for the calculation of an effect size. There
are three forms of this metric: (1) d-type, or standardized mean differences; (2)
r-type, or correlations; and (3) OR-type, or odds-ratios. Each is calculated
differently, but they can be mixed, as there are conversion equations for them all.
In many education meta-analyses the d-type is used, because of the experimental
nature of much of the literature, where some form of intervention is pitted against a
non-intervention condition or some alternative. In the best instance, this information
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is in the form of means, standard deviations and sample sizes for the experimental
and the control conditions. Since there is little in the way of standardized reporting
in the experimental literature of education, it is sometimes necessary to extract
effect sizes from test statistics (e.g., t-ratios), exact probabilities (e.g., p = .023) or
even inexact hypothesis-test outcomes (e.g., p \ .05) (See Glass et al. 1981; Hedges
et al. 1989 for more on this). There is also a modification of the basic effect size
equation for studies reporting pretest and posttest data for both experimental and
control groups (Borenstein et al. 2009).

In constructing d-type effect sizes, Glass originally used the standard deviation of
the control group as the denominator of the effect size equation (i.e.,
D ¼ !XE # !XC=SDC), because the untreated control group was considered to be
‘‘unbiased by the treatment.’’ Cohen (1988) modified this equation to represent the
joint variation in the treatment and the control groups by producing an effect size
metric (called Cohen’s d; Table 2, Eq. 1) based on division of the mean difference
by the pooled standard deviations of both groups (Table 2, Eq. 2). Cohen’s d has
become the accepted standardized difference effect size. The equations for
additional study-level statistics are shown and described in Table 2.

For a general qualitative assessment of the magnitude of an effect size there is the
set of benchmarks established by Cohen (1988), where: (1) d C 0.20 B 0.50 is
referred to as a small average effect; (2) d [ 0.50 B 0.80 is referred to as a medium
effect) and (3) d [ 0.80 is called a large effect. Valentine and Cooper (2003) warn
that these qualitative descriptors may be misleading in fields like education where
smaller effect sizes tend to be the norm.

Another descriptor used in interpreting effect sizes is referred to as U3 (Cohen
1988) or the ‘‘percentage of scores in the lower-meaned group that are exceeded by
the average score in the higher-meaned group’’ (Valentine and Cooper 2003, p. 3).
For an effect size of d = 0.50, U3 is approximately 69 % of area under the normal
curve. This means that students at the average of the treatment outperformed
students at the average of the control group (i.e., the 50th percentile) by 19 % (i.e.,
69–50 % = 19 %). Care needs to be taken in interpreting these percentages because
not all collections of effect sizes are normally distributed, as it is presumed in this
approach to interpretation. Because of this it is generally more accurate for
distributions of effect sizes rather than individual ones.

Extract effect sizes—application

Information for effect sizes was extracted by at least two independent coders.
Included in this information were the sample size of each condition and the
direction of the effect. The inter-rater reliability of this task was 91.90 %
(j = 0.84).

As a demonstration of how the basic statistics just presented appear in the
software package Comprehensive Meta-AnalysisTM (Borenstein et al. 2005), Fig. 1
shows the descriptive statistics associated with a subset of 21 effect sizes drawn
from the complete distribution of 117 effect sizes. On the far left of the figure are
the study names, in this case the author names and publication dates. In the center
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Table 2 Study-level statistics used in meta-analysis and explanations

Equation
number

Equation name Equation Explanation

Eq. 1 Cohen’s d (standardized
difference effect size)

d ¼ XE#XC

SDPooled

Cohen’s d is the basic unit of effect size in meta-analyses that compare an
experimental condition with a control condition on a continuous-level dependent
variable. The numerator is the ± difference between the means of the experimental
condition and the control condition. The denominator is shown in Eq. 2

Eq. 2 Pooled SD SDPooled ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnE#1ÞSD2þðnC#1ÞSD2Þ

ðnEþnCÞ#1

q
The pooled standard deviation of the experimental and control conditions’ standard

deviations is the denominator of d-type effect sizes

Eq. 3 Hedges’ g (df = N - 1)
Correction for small sample
size

g ¼ d 1# 3
4df#1

" #
Cohen’s d is called a biased estimator because it does not correct for low sample size

that tends to inflate their effect size. Hedges’ g is the unbiased estimator

Eq. 4 Standard Error of g seg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
neþnc

nenc
þ d2

2ðneþncÞ

q
! 1# 3

4df#1

" #
The unbiased standard error of g, based largely on sample size, is the estimated

‘‘standard deviation’’ in the population

Eq. 5 Variance of g (Within-study
variance)

vg ¼ se2 The standard error (Eq. 4) is converted to a variance by squaring it

Eq. 6 z test (test statistic) zg ¼ g
seg

The test statistic z is constructed by dividing the effect size g by the standard error of
g (seg). It tests the null hypothesis (without degrees of freedom) that g = 0 (does not
exceed chance expectations)

Eq. 7 Two-tailed test of zg
?(a = .05)

Null (g = 0):
zg' or( ) 1:96 ða ¼ :05Þ

The two-tailed z value null hypothesis g = 0 is tested using z = 1.96 (p = .025) as
the critical value

Eq. 8 95th confidence interval Lower 95th ¼ g# ð1:96 ! SEgÞ
Upper 95th ¼ gþ ð1:96 ! SEgÞ

The upper and lower boundaries of the 95th confidence interval define the range
within which the effect size is likely to reside. Intervals that cross zero (? and -
limits, or the reverse) are judged to be not significantly different from 0. This
interpretation should match the z test

A
m

eta-an
alysis

o
f

b
len

d
ed

learn
in

g
an

d
tech

n
o

lo
g

y

123



F
ig

.
1

S
tu

d
y-

le
v
el

st
at

is
ti

cs
an

d
F

o
re

st
p
lo

t
o
f

2
1

ef
fe

ct
si

ze
s

fr
om

th
e

d
is

tr
ib

u
ti

o
n

o
f

1
1
7

ef
fe

ct
si

ze
s

R. M. Bernard et al.

123



are the study-level statistics for these 21 effect sizes: Hedges g (Eq. 3), the standard
error (se, Eq. 4), the variance (v, Eq. 5), the upper and lower boundaries of the 95th
confidence interval, sometimes referred to as CI-95th (Eq. 8), the z value (Eq. 7)
and its associated probability (p value). On the right side of the figure is a graphic
representation called a Forest plot. The effect size for each study is depicted as a
dot. The lines around it show the width of the 95th confidence interval for each
study. Note that confidence intervals spanning 0.0 on the distribution are considered
to be not significantly different from zero. The z test of these effect sizes also
indicates that p [ .05 for these studies. The dots that represent the effect size vary in
size. Smaller dots are lower leverage effect sizes (i.e., smaller contributors to the
weighted average effect size), while larger dots are higher leverage effects
characterized by larger sample sizes.

Code study features and moderator variables—general

Study features can fall into four categories: (1) publication information (e.g., type of
document, publication date); (2) methodological quality information (e.g., type of
research design, measurement quality); (3) demographic information (e.g., grade
level, subject matter); and (4) substantive moderators (i.e., instructional method,
time-on-task). Moderators can be either categorical, ordinal or interval/ratio in terms
of measurement level.

Moderator variable analysis of coded study features attempts to identify
systematic sources of between-study variation, and so if QTotal is not significant
(i.e., the effect size distribution is homogeneous) there will be little chance that any
moderators will be significant. One potential source of variation that is often
referred to in the literature of meta-analysis derives from the presence of different
research designs (e.g., Abrami and Bernard 2012). True experiments employing
random assignment intended to neutralize selection bias are the most highly prized.
Quasi-experimental designs that employ pretesting to establish group equivalence
are considered to be reasonable alternatives to true experiments. Pre-experimental
designs that contain no mechanism to ensure that selection bias is controlled are
considered to be the weakest form of evidence (Campbell and Stanley 1963).

Code study features and moderator variables—application

Moderator analysis of coded study features was used to explore variability in effect
sizes. These study features were derived from an ongoing analysis of the theoretical
and empirical literature in the field and were based on several previous meta-
analyses (Bernard et al. 2009; Schmid et al. 2014). Study features were of four
major categories: methodological (e.g., research design); publication demographics
(e.g., type of publication); course demographics (e.g., course level); and substantive
(e.g., purpose of technology use). Among the latter, we were especially interested in
the study features related to BL and interaction treatments. We considered the
following dimensions on which experimental conditions consistently could be
contrasted to control conditions: communication support; search and retrieval;
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cognitive support; content/presentational support; and combinations of purposes.
Inter-rater reliability for study features coding was 91.77 % (Cohen’s j = 0.84).

Step 4: evaluating the quality of studies (judge methodological quality, judge
publication bias, perform sensitivity analysis)

Judge methodological quality—general

The methodological quality of included studies is part of the calculus that is used to
judge the overall quality of a meta-analysis. If there is differential quality, especially
if it favors one category of quality indicators, like research design, all of the findings
can be jeopardized. Valentine and Cooper (2008) developed an instrument, called
The Study Design and Implementation Assessment Device (Study DIAD), intended
to improve the validity of judgments of the methodological quality of studies to be
included in a systematic review. At the highest level, the device provides the
possibility of assessment in four categories: (1) internal validity; (2) measurement
and construct validity; (3) statistical validity; and (4) external validity. There are
additional lower levels of assessment that when added together result in an overall
score in each of the large categories.

Judge methodological quality—application

Our approach is based on the top-level structure of the Study DIAD. We assess each
study in terms of six major qualities: (1) research design; (2) measurement quality;
(3) effect size extraction precision; 4) treatment duration adequacy; (5) material
equivalence; and (6) instructor equivalence. Each dimension is weighted according
to its presumed importance to the validity of interpretation (i.e., how trustworthy
each study is) and the weighted sum is tested in meta-regression against the effect
sizes derived from each study. Table 3 shows the results of this analysis. The
conclusion is that the study methodological quality index is not predictive of effect
size (the slope is 0.0, p [ .05). In other words, study quality does not differentially
bias the findings of the meta-analysis. Based on this methodological quality
analysis, there was no reason to apply any method of correction.

Judge publication bias—general

Analysis of publication bias seeks to determine if a sizable number of studies might
have been missed or otherwise not included in a meta-analysis (Rothstein et al.

Table 3 Meta-regression analysis of methodological quality index by effect size (k = 117)

Regression model Slope and standard error Confidence interval Significance test

Slope (b) SE Lower 95th Upper 95th Z value p value

Slope -0.02 0.02 -0.06 0.02 -0.83 .41

Intercept 0.62 0.35 -0.06 1.30 1.79 .07
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2005) and that this number, if found and included, would nullify the average effect.
There are various tools for assessing this bias, including the examination of a funnel
plot (i.e., effect size by standard error) and statistical procedures like classic fail-
safe analysis and Orwin’s fail-safe procedure. The classic fail-safe procedure is used
to determine how many null-effect studies it would take to bring the probability of
the average effect to a. Orwin’s procedure indicates the number of null studies
needed to bring the average effect size to some standard of triviality (e.g.,
g? = 0.10). Duval and Tweedie’s (2004) procedure specifies the number of missing
effect sizes necessary to achieve symmetry between effect sizes below and or above
the mean. It then recalculates g? considering the studies that were imputed (i.e.,
added mathematically to achieve symmetry). If no effect sizes are imputed, then
symmetry is assumed.

Judge publication bias—application

The funnel plot for the current meta-analysis depicted in Fig. 2 is generally
symmetrical around the mean of the distribution (g? = 0.334). The following
analytical statement about publication bias analysis appears in Comprehensive
Meta-AnalysisTM:

This meta-analysis incorporates data from 117 studies, which yield a z value of
14.97 and corresponding 2-tailed p value of 0.00000. The fail-safe N is 6,709.
This means that we would need to locate and include 6,709 ‘null’ studies in order
for the combined 2-tailed p value to exceed .05. Put another way, 57.3 missing
studies would be needed for every observed study for the effect to be nullified.
The Orwin fail-safe for this study is N = 254. This means that we would need to
locate 254 studies with a Hedges’ g of 0.0 to bring the combined Hedges’ g under
0.10. The trim and fill results suggest a similar pattern of inclusiveness. Under the
fixed effect model the point estimate and 95 % confidence interval for the
combined studies is 0.316 (Lower 95th = 0.28, Upper 95th = 0.36). Using trim
and fill these values are unchanged. Under the random effects model the point
estimate and 95 % confidence interval for the combined studies is 0.334 (Lower
95th = 0.26, Upper 95th = 0.41). Using trim and fill these values are unchanged.

Fig. 2 Funnel plot with effect sizes (horizontal axis) and standard errors (vertical axis)
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(Note: the fixed effect model and the random effects model are discussed in detail
in Step 5 below.)

We judged that there was no publication bias present that might skew or
compromise the results.

Perform sensitivity analysis—general

Outliers can play a significant role in distorting both the overall mean and variability
of a collection of effect sizes. This is especially true for the fixed effect model where
the inverse of within study variance is used to give priority to large studies with
small standard errors and diminish the effect of smaller studies. The random effects
model ameliorates this bias somewhat by incorporating average between-study
variance (i.e., tau-squared) into the inverse variance weights. However, even with
the random effects model, unrealistically large positive or negative effect sizes
should be degraded in magnitude or removed from the collection. Comprehensive
Meta-AnalysisTM contains a calculation module called ‘‘One Study Removed.’’
When activated, the routine recalculates the statistics with one study removed, in
turn, for the entire distribution, so that the researcher can judge the influence or
leveraging that individual studies have on the overall weighted average effect size.
Large effect sizes, either positively or negatively signed, can affect the weighted
average effect size, especially under the fixed effect model. When extreme effect
sizes have large sample sizes, this influence is magnified, often skewing the
weighted average effect size to a considerable degree. Since inverse variance
weights are smaller under the random effects model, the exaggeration caused by
‘‘high leverage’’ effect sizes, is considerably reduced. It is important to examine
distributions of effect sizes and to deal with aberrant effect sizes, either by removing
them from the distribution (not the best solution), reducing their magnitude (e.g.,
reduce g = 8.0 to some smaller value within range of other large effect sizes) and/or
reducing their influence (e.g., reduce sample size).

As just mentioned, occasionally, effect sizes can be so large (or small) as to stand
out against the backdrop of more reasonably sized values. For instance, an effect
size of ±8.0 could be considered aberrant if all of the other large effect sizes are in
the ±2.0 to ±2.5 range. The first course of action is to check for calculation errors,
transfer errors or even reporting errors. Failing these explanations, a ‘‘one study
removed analysis’’ may reveal that the leveraging effect is either too large or
tolerable. If the outlying effects are judged to be too influential, they can be
downgraded to some more reasonable value (e.g., ±8.0 reduced to ±2.5, as in the
previous example) or removed from the analysis that follows. In all cases, a degree
of balance should be maintained by considering the consequences of any
adjustment.

Perform sensitivity analysis—application

The ‘‘One study removed’’ routine in Comprehensive Meta-Analysis was used to
identify sources of potential anomalies in the dataset. When one study was removed

R. M. Bernard et al.

123



and the random effects means and standard errors were calculated, the lowest mean
was g? = 0.318, k = 116, SE = 0.037, and highest mean was g? = 0.344,
k = 116, SE = 0.038. Both of these newly calculated averages fall within the
confidence interval of the total collection for g? = 0.334, k = 117, SE = 0.039,
Lower 95th = 0.26 and Upper 95th = 0.41. These data were judged to be extremely
stable and reasonably unaffected by anomalous combinations of effect sizes and
sample sizes.

Step 5: analyzing and integrating the outcomes of studies (synthesize studies,
categorical and continuous moderator variables)

Synthesize studies—general

After all of the effect sizes have been extracted and the basic statistics calculated,
the next step is to synthesize them. There are circumstances under which synthesis
is not advised (e.g., very small samples of effect sizes, extreme variation in
treatment definition or sample). Previously, we have discussed how effect sizes are
derived, along with the statistics associated with them and so it is now time to
examine how the effect sizes are combined.

Table 4 provides a nearly complete set of the equations for synthesizing a
distribution of effect sizes under both the fixed effect and random effects models,
along with explanations of their functions and importance. In the following sections,
these equations will be to referred and discussed by number, just as they were in the
previous section on study-level statistics.

At the study level (or the level of the individual effect size), there is only one
source of variability (i.e., within-study variability) that is derived largely from the
size of the sample and expressed as the standard error (se) and the variance (v).
Large sample studies produce small standard errors and variances, while small
sample-size produce the reverse. At the level of the meta-analysis (i.e., synthesis)
there is another source of variability that can be identified. It is called the ‘‘between-
study variance’’ (i.e., analogous to between-group variation in ANOVA) because it
represents the differences among studies in the meta-analysis. It is how between-
study variance is handled that defines the meta-analytic model that is applied and to
a great extent, the results that are achieved. There are two analytical models—the
fixed effect model and the random effects model—and it is important to understand
which should be used in what circumstance. Both models are built around weighted
effect sizes, but it how the study weights are constructed that constitutes the primary
difference between them.

Fixed effect model The fixed effect model assumes that the distribution of effect
sizes is so uniform that it can be described by a fixed weighted average (i.e., a single
true point) around which there is only sampling error, and that all excess between-
study variability, over and above sampling error, is distributional heterogeneity.
This presumption about the nature of the meta-analysis affects how weighting of
effect sizes is accomplished. Under the fixed model, the inverse of the within-study
variance (Table 4, Eq. 9) is used to give larger studies greater weight and smaller
studies less weight. Eq. 11 shows how the weights from all studies are summed.
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Table 4 Meta-analysis level statistical equations and explanations

Equation
number

Equation name Equation Explanation

Eq. 9 Fixed effect model inverse variance weight
(where Vi is within-study variance)

Wi ¼ 1
vi

Under the fixed model, studies are weighted by the inverse (reciprocal) of
their within-study variance (se2) to give them differential
(proportional) weight in the synthesis

Eq. 10 Random effects model inverse variance
weight (where s2 is average between-
study variance)

Wi ¼ 1
viþs2 Under the random model, studies are weighted by the inverse of the sum

of their within-study variance plus the average between-study variance
(s2), averaged over the entire distribution of effect sizes. The equations
for this statistic are complex and can be found in Borenstein et al.
(2009)

Eq. 11 Sum of the weights (fixed [Eq. 9] and
random [Eq. 10])

Pk
i¼1 Wi ¼ W1 þW2. . .Wk The sum of the weights is the denominator of the weighted average effect

size and is always positive

Eq. 12 Sum of the weights times g (fixed [Eq. 9]
and random [Eq. 10])

Pk
i¼1 Wigi ¼ W1g1 þW2g2. . .Wkgk The sum of the weighted effect sizes (i.e., the weight times g) is the

numerator of the weighted average effect size. This sum can be either
positive or negative and gives g? its positive or negative valence

Eq. 13 Weighted average of g (symbolized as g?,
!E!S and !T) (same for fixed and random
models)

gþ ¼
Pk

t¼1
WigiPk

t¼1
Wi

The weighted average effect size (g?) is calculated by dividing Eq. 12 by
Eq. 11. The numerator of the Eq. determines the ± sign of the
weighted average effect size

Eq. 14 Variance of g? (same for fixed and random) Vgþ ¼ 1Pk

t¼1
Wi

The variance of the weighted average effect size is calculated as the
inverse of the sum of the fixed or random weights (Eq. 11)

Eq. 15 Standard error of g? (same for fixed and
random)

SEgþ ¼
ffiffiffiffiffiffiffiffi
Vgþ

p
The standard error of the weighted average effect size is calculated as the

square root of the variance

Eq. 16 Z value for g? (same for fixed and random) Zgþ ¼ gþ

SEgþ
The Z value associated with weighted average effect size is calculated by

dividing the weighted average effect size by the standard error of g

Eq. 17 Two-tailed test of Zg
?, a = .05 (Same for

fixed and random models.)
Null (g = 0):

Zg' or( ) 1:96ða ¼ :05Þ
This two-tailed test of Z is performed in the same way as described in

Eq. 7 (Table 2)

Eq. 18 Confidence interval of g? (Same for fixed
and random models.)

Lower 95th ¼ g# ð1:96 ! SEgÞ
Upper 95th ¼ gþ ð1:96 ! SEgÞ

The upper and lower boundaries are calculated in the same way as
described in Eq. 8 (Table 2)
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Eq. 12, the term referred to as ‘‘weight times g’’ is also summed for each effect size.
The weighted average effect size for the fixed model is then formed by dividing
Eq. 12 by Eq. 11. In Table 4 the calculation of this weighted average is shown in
Eq. 13.

The variance of g? (V) is formed from the reciprocal of the sum of the weights
(Eq. 14) and the standard error (SE) is derived from the variance (Eq. 15). Using g?

and the standard error, a Z test can be performed (Eq. 16) to test the two-tailed null
hypothesis that g? = 0, and the lower and upper boundaries of the 95th confidence
interval can be constructed (Eq. 17). If g? is significant (e.g., g? [ 0), it is presumed
to be located within the confidence interval range that does not include zero. If g? is
not significant (g? = 0), no real assertions about the location of the mean can be made.

Under the fixed effect model, the second form of variation, between-study
variation referred to above, is not used in the construction of the average effect size.
Instead, between-study variability is summed in a statistic called QTotal (i.e., sum of
squares, Eq. 19) that is then tested for significance using the v2 distribution, with k – 1
(i.e., number of effect sizes minus one) degrees of freedom (Eq. 20). A significant
Q value indicates that the distribution is heterogeneous beyond sampling error. One
caveat to this is that Q-total is very sensitive to the number of effect sizes in the
distribution (k), meaning that smaller distributions tend towards homogeneity while
larger distributions are often heterogeneous. Higgins et al. (2003) developed a more
descriptive derivative of Q-total referred to as I-square (Eq. 21). It is interpreted as
the percentage of heterogeneity, out of 100 %, that exceeds sampling error.

Generally speaking, low heterogeneity comes from standardization of all of the
features that contribute to differences among studies, like the nature of the samples,
the similarity of the treatments, the precision and similarity of the instrumentation,
etc. The more standardization and uniformity, the more viable the fixed effect model
becomes. Studies in the health sciences (e.g., medical studies, drug trials) are
notable for their intent towards standardization and so are more likely to qualify for
the fixed effect model.

Random effects model By contrast, the random effects model does not assume
that all effect sizes can be summarized with a common weighted average effect size,
because there is no presumption of standardization or uniformity. Because they are
so different, except for a general treatment definition, measurement instruments etc.,
each study is treated as if it was a random sample drawn from micro-populations of
like (but unknown) studies, and as such should not be treated so differently in terms
of weighting by sample size as any other study. Between-study variability is not
summed, as it is in the fixed effect model (i.e., QTotal), but instead distributed as
average variability (called s2) and added to the within-study variability when
forming inverse variance study weights (Eq. 10). These weights tend to be smaller
than study weights applied under the fixed effect model, thus providing a more even
weighting across the entire distribution. Once the random effects weights are
constructed for each effect size, the other steps in constructing meta-analysis level
statistics are exactly the same (Eqs. 11–18).

Synthesis strategy In the social sciences, including education, it is generally
agreed (e.g., Hedges and Olkin 1985) that most collections of effect sizes around a
common question should derive interpretation from the random effects model. This
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is because most experimental literatures in education are comprised of primary
studies that differ in a number of ways, so that establishing a fixed-point estimate of
average effect sizes makes little sense. Examples of difference in primary studies
are different research designs, different learners (e.g., age, background), different
measures (i.e., some standardized and some not) and different reporting standards.
However, this does not mean that the fixed effect model is not useful in interpreting
a meta-analysis in education. The statistics QTotal and I2 tell us about how much
variability is present in a collection of studies. These statistics also offer insight into
whether it is possible that moderator variables (i.e., coded characteristics of the
studies) might help explain how the overall average effect size might differ under
different instructional, demographic or other conditions. Without sufficient
variability, moderator variable analysis would be severely limited. In summary,
both models can play an important role in the interpretation of a meta-analysis at the
level of synthesis.

Synthesize studies—application

Data were analyzed using Comprehensive Meta-AnalysisTM (Borenstein et al. 2005),
a dedicated meta-analysis software. The summary statistics derived from k = 117
effect sizes are shown in Table 5. This table shows a fixed weighted average effect
of g? = 0.316 (Eq. 13) and a random weighted average effect size of g?= 0.334
(also Eq. 13) (i.e., a low to moderately low average effect size by Cohen’s
qualitative standards), the standard error (Eq. 15), the lower and upper limits of the
95th confidence interval (Eq. 18) and the Z value along with two-tailed probability
of g? (Eqs. 16 and 17). Both the fixed and the random weighted average effect sizes
are significantly greater than zero. Heterogeneity statistics are shown for the fixed
effect model, Q-total = 465.5, p \ .001) (Eq. 19), and I-squared = 69.49 %
(Eq. 21). (For more information, consult Hedges and Olkin 1985; Borenstein
et al. 2009.) The Q-statistic tells us that the distribution is significantly
heterogeneous and I-squared indicates that over 50 % of variability in the
distribution is between-study variance (i.e., variability in effect sizes that exceeds
sampling error). Higgins et al. (2003) call this moderately high between-study
variability.

Table 5 Overall weighted average random effects and fixed effect sizes and homogeneity statistics

Analytical models Effect size and standard error Confidence interval

k g? SE Lower 95th Upper
95th

Random effect
model

117 0.334* 0.04 0.26 0.41

Fixed effect model 117 0.316** 0.02 0.28 0.36

Heterogeneity Q-total = 372.91, df = 116,
p \ .001

I-squared = 68.89 % s2 = 0.11

* z = 8.62, p \ .001; ** z = 15.68, p \ .001
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In this meta-analysis, random effects model statistics are most appropriate for
interpretation because of the considerable differences among studies in terms of
treatments, measures, participants, etc. (Borenstein et al. 2009). The significant
variability indicated from the fixed effect analysis suggests that differences among
samples exist. Some of the fluctuation might be accounted for by identifiable
characteristics of studies, so that moderator variable analysis is warranted.

Analyze categorical and continuous moderator variables—general

Moderator variable analysis can take two forms: (1) analysis of nominal and/or
ordinal-level coded variables using a meta-analysis analog to analysis of variance to
determine if different levels or categories produce different results; and (2) weighted
meta-regression to determine if continuous predictor variables or ‘‘dummy coded’’
categorical predictors are correlated, thereby accounting for between-study
variability.

The most appropriate analytical model for categorical comparisons is the mixed
model (Borenstein et al. 2009) which involves synthesizing effects sizes within
categories using the random effects model (i.e., tau-squared is differential according
to categories) and then comparing the categories using the fixed effect model. The
result provides a test across categories (Q-between), in much the same way that
ANOVA is used to compare levels of an independent variable. Q-between is
evaluated using the v2 distribution with p – 1 degrees of freedom (i.e., number of
categories of the moderator variable minus one).

Analyze categorical and continuous moderator variables—application

Six coded moderator variables were analyzed in an attempt to explain some of the
previously detected variation in g. The mixed model was used for this purpose.

Categorical moderators The first two moderator variables, subject matter (i.e.,
STEM vs. Non-STEM) and course level (i.e., undergraduate vs. graduate courses)
were not significant across levels. However, all levels of each moderator was
significantly greater than zero and hover around g? = 0.334, the average for the
entire collection. The only exception to this is for graduate level courses, with an
average effect size of g? = 0.15, tended to underperform undergraduate courses.
Likewise, there was a tendency for STEM subject matters to outperform Non-STEM
subject matters.

In another set of analyses we explored the approximate amounts of time spent in
BL in the treatment condition. The two categories were low-to-moderate (up to
30 % of course time) and maximum time (approaching 50 % of course time).
Remember that studies with greater than 50 % of time online were beyond the scope
of this meta-analysis. While there is a definite trend towards higher effect sizes for
longer versus shorter time spent online, the Q-between was not significant for this
variable (Q-Between = 0.47, df = 1, p = .49) indicating that within chance they
are equal. However, this finding is suggestive enough, as well as being congruent
with Means et al. (2013), that it should be followed up with further primary studies.
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We also explored whether technology in the control condition made a difference
compared to no technology. The answer is that it does not in this collection
(Q-Between = 0.21, df = 1, p = .65). It is important to note that technology use in
the control condition was never for the purpose of blending face-to-face and online
study outside of class time. A similar finding was reported by Schmid et al. (2014),
albeit with a much larger collection of effect sizes.

In Table 6a, the analysis of purpose of technology use in the treatment condition
is shown. Four distinct levels were identified—communication support, search and
retrieval support, cognitive support and content/presentational support. A fifth
category, cognitive support ? content/presentational support contained various
combinations of the two. The Q-between for this variable was significant and a post
hoc comparison of cognitive support versus content/presentational support revealed
a significant difference between these two levels, z = 2.28, p = .011, with
cognitive support outperforming content/presentational support. This finding
replicates Schmid et al. (2014) for this variable. However, the combination
category was also significantly lower than the cognitive support level and not
significantly different from content/presentational level. The finding for this
variable is difficult to interpret and any explanation would be speculative.

In Table 6b, four conditions of coded interaction treatments (IT) were compared.
As a reminder, an IT is an arrangement of instructional/technology conditions that is
designed to encourage student–student, student–teacher and/or student–content
interaction (Bernard et al. 2009). Since in this study, the strength of ITs was not the
defining characteristic of the treatment/control distinction, the control condition could
contain ITs that the treatment condition did not contain. The first category in Table 6b
reflects this and the average effect size of g? = 0.11 is not significantly greater than
chance. The other results (lines 2–4 in Table 6b) strongly favor ITs in the treatment
conditions, and in fact their average effect sizes increase incrementally with more ITs.
Two ITs are significantly different from one IT (z = 2.65, p \ .001). However, three
ITs are not significantly different from two. All of the ITs in treatment conditions are
significantly different from category 1. Unfortunately, the exact combinations of ITs
could not be explored because of small cell sizes, with the exception of category 4
which contains all three kinds of ITS—student–student, student–teacher and student–
content. These results are similar to those reported by Bernard et al. (2009) and in line
with Anderson’s (2003) hypotheses regarding the additive effects of ITs.

Continuous moderators In the final analysis, we wanted to know if the joint
effects of blending with technology on achievement outcomes had changed during
the period covered by this meta-analysis, 1990 up to 2010. To do this we ran
weighted multiple meta-regression (i.e., method of moments random effects model)
treating publication year, a continuous variable, as the predictor and Hedges’ g (also
continuous) as the outcome variable. This relationship is depicted in the scatterplot
in Fig. 3. The results of this analysis revealed that effects associated with BL in
higher education (k = 117) have not changed substantially over the years
(bY = 0.00, p = .41, QRegression = 1.00, QResidual = 142.00). There is wide vari-
ability around the average effect size of 0.334, and the regression line is virtually
flat. However, note the greater number of studies beginning just after the year 2000
and continuing to the year 2010.
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Step 6: interpreting the evidence (draw conclusions from the meta-analysis
and discuss the results)

Draw conclusions from the meta-analysis and discuss the results—general

This step in a meta-analysis is fairly straightforward and not that different from the
interpretation and discussion of results in any research project. Interpretation and
discussion attempts to establish how collected and analyzed data inform the research
question(s) that guided the review and explores the possible theoretical, conceptual
and/or practical implications of the findings. The results are usually characterized in
context with the literature and previous work that has been done, with an emphasis
on the contributions that the current study makes to both theory and practice.

Draw conclusions from the meta-analysis and discuss the results—application

The most general conclusion that can be drawn from this meta-analysis is that
improvement in achievement related to BL is low but significantly greater than zero.
In terms of percentile difference (i.e., U3 minus 50 %), students at the median of the
control condition (i.e., no BL) would be expected to be 13.0 % higher in
achievement had they experienced the BL conditions. The average effect size of
g? = 0.334 (k = 117) is in the middle of the low category in terms of Cohen’s
(1988) qualitative strata of effect size magnitude (i.e., g? [ 0.20 \ 0.50). A caveat
here is that a reasonable degree of between-study heterogeneity makes it more
difficult to fix the exact location of the population mean aside from the probability
that it resides between g?= 0.26 and 0.41 (i.e., lower and upper limits of the 95th
confidence interval).

Interestingly, this average effect size is in the same ballpark as the findings for
BL by Means et al. (2013) where a random effects average effect size of g? = 0.35
for k = 23 effect sizes was reported. This is despite the fact that our definition of BL
was somewhat different, and more conservative, than theirs, where OL could take a
larger proportion of total time (i.e., from 25 % to close to 100 %). And, it is very
close to the overall average effect size from the study by Schmid et al. (2014) from
which these BL results are derived (g? = 0.33, k = 879, p \ .001). All of these

Fig. 3 Scatterplot of publication year by effect size (k = 117)
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studies, including the present review, compared the presence of technology in the
treatment condition to classroom conditions containing little or no technology.

We might surmise from this that the effects of technology integration in higher
education, whether into full face-to-face classrooms or in distributed venues in the
case of the blending of CI and online instruction, is effective to a modest but
significant degree. It is a finding that is worth noting, although it is a difficult
problem to explore experimentally, since students working outside of class may
devote more or less time to studying online and use materials that may be different
from or not available to students working solely in face-to-face classrooms. There is
little doubt of confounding in the studies that form the bulk of this meta-analysis
and generally speaking meta-analysis is ill-equipped to deal with confounds among
substantive moderator variables, since there is no latitude for control as there is
in true experiments. On the surface, these results appear to fly in the face of Richard
E. Clark’s (1983, 1994, 2009) hypothesis about the neutrality of technology use in
education, but this cannot be determined for certain from this review, given the
nature of the research literature that it draws upon.

However, these results do offer a reason for the continued investigation of BL as
a viable, and possibly superior, option to straight face-to-face instruction and its
alternatives, DE and OL. The researchable question, however, revolves around the
balance between internal and external validity, as elaborated by Campbell and
Stanley (1963) and Shadish et al. (2002). Should we control all potentially
confounding factors in an effort to isolate the one active ingredient in learning
success (a la Clark)—in this case the technology applied or the instructional
approach used—risking results that are not replicable or even applicable to the real
world of higher education (Abrami and Bernard 2006; Abrami and Bernard 2012)?
Or should we consider technology and instructional method as an inseparable dyad
that are used together to achieve the goals of education and use experimental
replication as a means of determining which combinations work best (Ross and
Morrison 1989)?

In many circumstances DE and CI are not true alternatives to one another, since
they often serve distinctive clienteles—those who can attend face-to-face classes
and those who cannot or prefer not to. BL is more like CI than DE, because it
requires face-to-face attendance at particular times and at particular places, but if
the online component is integrated successfully, it seems to add a dimension of
independence from time and place that may turn out to be both more motivating and
more facilitative of the goals of instruction than either CI or DE/OL. Therefore, new
generations of primary research should address questions related to instructional
design, particularly in regards to what mixes of CI and online conditions produce
both deep and meaningful learning and more satisfying educational experiences.
Understanding about student interaction and how to design interaction treatments
that promote opportunities for students to interact among themselves, with the
teacher and/or with course content is also central.

Abrami et al. (2011) argued that the next generation of designs for OL, and by
extension BL, should help facilitate student motivation, self-regulated individual
behavior and more purposeful student–student interaction. However, designing
guided, focused and intentional student activity goes beyond just providing
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opportunities for interaction (i.e., the definition of interaction treatments in Bernard
et al. 2009). Researchers and designers (and instructors) must carefully consider
why these forms of activity and/or mediated setups are desirable, and more
importantly, how they can better facilitate learning based on theory, so that they are
powerful and replicable. The literature is replete with examples of pedagogy and its
attendant technology which fail, partly because the fundamentals are not grounded
in theory and/or evidence-based principles of instructional design.

To realize evidence-based practice, we see theoretical work and research in three
areas that are pertinent to future exploration and development in BL: (1) self-
regulation design principles (e.g., Zimmerman 2000); (2) motivational design
principles (e.g., Pintrich 2003); and (3) collaborative and cooperative learning
design principles (e.g., Johnson and Johnson 2009), each discussed briefly below.

When working in the OL portion of BL, students need to learn skills, be provided
with scaffolded experience and allowed to practice in real learning environments.
This is important for students in BL settings because, by and large, these students
are working outside of the orbit of direct teacher influence. Assignments that help
students find value in goal setting, strategic planning, self-observation (i.e., self-
reflection), etc., among the primary pillars of educating students in self-regulation,
need to be promoted in the BL environment as well as in CI. Likewise, motivation is
key to successful learning in BL environments. Structuring learning environments
that encourage self-efficacy, stimulate interest and intrinsic motivation, and ensure
task value are likely to be particularly effective under BL instructional conditions.
Finally, cooperative and collaborative learning opportunities can be built into BL
assignments (Bernard et al. 2000), can improve OL outcomes (Borokhovski et al.
2012) and can support OL/BL tool construction (Abrami 2010) to not only enhance
learning, but also to strengthen elements of motivation and self-regulation. The
literatures in these three areas of educational theory and practice intersect
sufficiently that in combination they can provide the basis for a new and powerful
theory of BL, thus laying the groundwork for future research agendas and even
greater successes in practice.

Step 7: presenting the results

General

There are at least three audiences that may be interested in the results of a
systematic review of the type described here. Practitioners, teachers in higher
education contexts in this instance, may use the results to become knowledgeable of
research findings and possibly modify or supplement their practices. Policy-makers,
individuals who make purchase decisions and form policies that affect the large-
scale adoption of innovations, may be informed by the results of a systematic
review. It is recognized that research represents only one form of evidence for
decision-making, but with access to the voices of researchers, broadly characterized,
policy-makers are in a better position to make rational and informed choices. The
third group that is likely to be affected by a systematic review is researchers who
have contributed, or may potentially contribute studies to the growing corpus of
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evidence that form the substance of reviews. Researchers need to know the
directions of inquiry that are informing their field, in addition to the design,
methodological and reporting conventions that make it possible for individual
studies to be included in reviews.

For the first two groups, there may be an issue related to the form of reporting a
systematic review or meta-analysis. As has been demonstrated here, a fair degree of
knowledge and a sizable team of researchers is required to construct a review, and
likewise there is some degree of knowledge related to its interpreting and applying
its findings. Knowledge translation centers have been established to act as ‘‘go-
betweens,’’ of sorts, linking the researcher or meta-analyst with consumers of the
results of systematic reviews or meta-analyses (e.g., What Works Clearinghouse).

Conclusion

In this article we have provided a brief description of meta-analysis as a
methodology for quantitatively synthesizing the results of many comparative studies
organized around a central question or set of questions. Seven steps were described
in moderate detail and an example, an examination of BL teaching in higher
education, was provided.2 Using this methodology to address the question of
whether technology has an impact on learning, we have found numerous examples
of how meta-analysis both effectively synthesizes extant, empirical data, and
perhaps even more importantly, serves as a heuristic to identify potent, causal
factors that can inform practice and further research. We recognize that such
procedures, as well as the meta-analyst who applies them, are ‘‘prisoners of the
data’’: if the data are biased, so too will the results of a meta-analysis be biased. This
illustrates the imperative that future primary researchers unequivocally isolate
variables, create measures that are valid and reliable tools, and restrict the
interpretation of outcomes to those that are core to the research question.
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